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The combination of conventional epidemio-
logic investigations with molecular techniques
for genotyping pathogens has elucidated the
epidemiology of many infectious diseases. The
most frequently used genotyping techniques
(e.g., pulsed-field gel electrophoresis, restriction
fragment length polymorphism [RFLP], and
randomly amplified polymorphic DNA) yield
fragment-based data. Fewer than 100 patterns
can be compared visually. For larger numbers,
commercially available computer programs can
be used to identify a manageable subset of
potentially matching patterns, which are then
compared visually. This approach is accurate but
cumbersome and excessively labor-intensive as
the number of isolates exceeds several hundred.
Furthermore, the results of computer-assisted
matching are not as reproducible as systematic
computational methods. These limitations sig-
nificantly constrain the size, scope, and standard-

ization of molecular epidemiologic investigations.
We present an approach by which identical
patterns can be identified from large collections
of DNA fingerprints.

The number of IS6110 fingerprints continues
to increase, with many studies across the globe
producing IS6110 data to characterize Mycobac-
terium tuberculosis isolates. Such molecular
epidemiologic studies provide information about
tuberculosis (TB) transmission patterns. Studies
in Ethiopia, Tunisia, and The Netherlands (1),
South Africa (2), India (3), Denmark and
Greenland (4,5), the United States (6), and
Tanzania (7), among many others, exploit
IS6110-based RFLP genetic fingerprints.

We developed an automated computational
system, in which a statistical analysis of the error
in measuring fragment sizes provides a concep-
tual framework for comparing sets of fragment
lengths. The computational approach to lane
comparison—align-and-count method (ACM)—
permits calculation of the number of fragments
that match between two IS6110-based RFLP
fingerprints. The parameters of the computa-
tional ACM are adjusted to provide the same high
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Molecular epidemiologic studies of infectious diseases rely on pathogen genotype
comparisons, which usually yield patterns comprising sets of DNA fragments (DNA
fingerprints). We use a highly developed genotyping system, IS6110-based restriction
fragment length polymorphism analysis of Mycobacterium tuberculosis, to develop a
computational method that automates comparison of large numbers of fingerprints.
Because error in fragment length measurements is proportional to fragment length and
is positively correlated for fragments within a lane, an align-and-count method that
compensates for relative scaling of lanes  reliably counts matching fragments between
lanes. Results of a two-step method we developed to cluster identical fingerprints  agree
closely with 5 years of computer-assisted visual matching among 1,335 M. tuberculosis
fingerprints. Fully documented and validated methods of automated comparison and
clustering will greatly expand the scope of molecular epidemiology.
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sensitivity as the labor-intensive visual inspec-
tion used over the last 5 years.

We developed an approach to identifying a
set of identical fingerprints when the identity
of the fingerprints is nontransitive. We also
explored improving the specificity among matched
fingerprints to reveal additional information in
RFLP lanes.

Data Acquisition
Genotyping M. tuberculosis isolates with

IS6100-based RFLP fingerprinting was per-
formed as described in van Embden et al., 1993
(8). Computer-assisted comparison and cluster-
ing were performed on the RFLP lanes as
described in Woelffer et al., 1996 (9).

Internal standards were used to quantitate
fragment sizes visualized with a DNA probe to
IS6110. Two films’ exposures were scanned into
Whole Band Analyzer software (BioImage, Ann
Arbor, MI, USA); one was obtained when probing
for the internal standard, the other when probing
for IS6110. The resulting images were aligned
with three registration marks that gave
reference to the original nylon membrane. The
Whole Band Analyzer software quantitated
fragment lengths for the IS6110-visualized
bands, which were inspected and edited
manually in the software package. The resulting
collections of fragment lengths for each lane
(bacterial isolate or laboratory strain H37Rv)
were exported to our ACM software and
compared with other lanes.

Mathematical Methods
The following is a descriptive summary of the

principles underlying the analysis (Appendix).

Analysis of Error in Data
The magnitude and characteristics of experi-

mental error were empirically assessed by
analyzing variation in the results obtained from a
reference strain included in each experiment
(gel). The absolute and proportional differences
in the measured fragment lengths of biologically
identical samples of this strain were calculated;
results showed that the error in measurement
was proportional to fragment length and greater
between than within gels.

Align-and-Count Matching Algorithm
A method for matching was developed to

accommodate the empirically defined error. The

fragment length data from two lanes were scaled
through a range of values, and the maximum
number of mutually closest bands falling within a
threshold tolerance was reported (Figure 1). The
acceptable tolerance was smaller when lanes
from the same gel were compared than when
lanes from different gels were compared. An
animated demonstration of this method is
accessible on the Internet (URL for use with a
graphics-capable Web browser: http://
molepi.stanford.edu/hugh/acm/counting).

A Graph-Theoretic Approach to Identical
Fingerprints

We considered pairs of patterns identical if all
fragments matched. However, because the
results might be nontransitive (A might be
identical to B, B identical to C, but A not identical
to C), the identification of groups of matched
patterns is more complicated. A graph-theoretic
approach was used to assemble clusters of
matching fingerprints.

Alignment and Analysis of Residual Error
We further aligned collections of lanes

determined to match according to the above
algorithms. The optimal alignment was defined
as that which minimized the proportional error
between putatively identical fragments. This
analytic step, which is comparable to the
experimental approach of rerunning clustered
strains in the same gel, improved the ability to
distinguish similar, but nonidentical fingerprints.

Figure 1. The align-and-count method finds the
maximum number of mutually closest bands within a
threshold deviation value ∆, for a search across a
range S of scaling values. The two lanes are scaled
incrementally, thus searching for the best alignment.
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Error in Analysis of H37Rv Data
Investigating the absolute error for pairs of

116 H37Rv lanes (Figure 2), we found that the
error was consistently higher in gel-to-gel
comparisons than in comparisons of lanes from
the same gel. Error was proportional to fragment
length for the range of fragment lengths from 0.9
kbp up to at least 5 kbp (Figure 2), which included
90% of the bands in the fingerprint data from San
Francisco. The latter empirical result was
consistent with the fact that the distance
migrated by a DNA fragment on an electrophore-
sis gel is typically proportional to the logarithm of
the fragment length. Furthermore, the error
found when we compared one band of a lane to
that band in another lane was positively
correlated to the error found for the other bands;
in other words, if the first band in lane A was
larger than the average measurement for that
band, it was likely that the other bands in lane A
would be larger than the average measurements.
This positive correlation was intuitively evident
in comparing lane maps (i.e., when comparing
graphic representations of the fragment lengths).
In Figure 3, the set of lane maps on the left are

measurements of a genotype found in San
Francisco. With the exception of the fourth lane
from the right, they represent a set of identical
patterns. Note that the error is mostly a scaling
error and that if one fragment is larger than
average for that lane, the others are very likely to
be larger also. These two observations—that
error is proportional to fragment length and
positively correlated for bands within a given
lane—suggests two classes of error: one is a
property of each band; the second is a property of
each lane. This analysis motivated us to develop a
computational algorithm that scales fingerprints
and measures the number of mutually closest
bands within threshold sizes of each other for the
best alignment, i.e., the scaling that maximizes
the number of matching fragments.

Alignment and Residual Error for H37Rv
Lanes

By optimally aligning (i.e., minimizing the
sum of proportional errors) pairs of H37Rv lanes,
we find a distribution of scaling factors and of
residual error. Table 1 shows 6,641 pairwise
comparisons of 91 replicate lanes (members of
each pair are taken from different gels). The
mean value of s, the scaling factor, for these 6,641
alignments is 0.0212, and the standard deviation
of s is 0.0189. The reduction in error due to

Figure 2. Means and two standard errors of the mean
error bars for pairwise comparisons among 116 12-
banded H37Rv lanes show that error is consistently
larger when comparing lanes between gels than when
comparing lanes from the same gel. The x-axis
corresponds to w(b), and the y-axis to d(b), as
presented in the text. It is evident that error is
proportional to fragment length in the range of
fragment lengths found in H37Rv. The data exhibit 2%
to 3% error for between gel comparisons, but only
approximately 1% error on average for within gel
comparisons.

Figure 3. Additional alignment of very similar
patterns can identify clearly distinct patterns.
Measurement noise obscures the detailed relation-
ships between 26 patterns that were identified from
1,335 as being very similar. However, after alignment
to a consensus pattern, a clearly distinct pattern (an
outlier from the other members of this autocluster)
can be readily identified. Fragment lengths are given
in kilobasepairs (kb).
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alignment is approximately twofold, to approxi-
mately 1% with a standard deviation also of
approximately 1% (Table 1); therefore, a search
range, S, of 0.10 will allow for virtually every
incidence of scaling error in the data. (Assuming
normally distributed scaling and noting that 0.10
lies more than four standard deviations about the
mean scaling error, we conclude that scaling
error will not be compensated in fewer than 1 out
of 10,000 independent pairwise comparisons.)
Employing a deviation tolerance, ∆, of 0.045
should ensure a sensitivity very close to 100% for
matching individual bands, after alignment.
(Assuming normally distributed differences
between replicate band measurements and a
deviation tolerance of 4.5%, which is approxi-
mately 3.5 standard deviations above the mean
fragment length error after alignment, one
should falsely conclude two identical bands do not
match with an approximate probability of
0.0002.) These parameter values, together with
the number of incremental searches, I, set to 100,
empirically gave results agreeing closely with
visual inspection by experienced researchers
who matched entire lanes. Similarly, one may
use analysis of within gel lane error to
determine the parameter values for the ACM to
match lanes from the same gel.

Both the range of scaling factors and the
threshold deviations are derived from empirical
investigation of the San Francisco data. An
adjustment for larger error in measurement is

included for the more rare larger fragment length
bands. In applying the ACM to San Francisco
bacterial fingerprints,  ∆  is allowed to increase at
a rate of 0.005/kbp above a value of 7 kbp.

San Francisco Bacterial Genetic
Fingerprint Comparisons

To evaluate the performance of the ACM, we
analyzed (by computer-assisted visual inspection
and by ACM) 125 lanes from bacterial isolates
obtained in the first half of 1996. We evaluated
ACM’s performance by first determining whether
a 1996 lane matched all bands to lanes in visually
defined clusters (from previous years), matched
other 1996 lanes, or did not find any identical
matches at all. The automated matching of the
1996 lanes agreed nearly perfectly with the
visual analysis; the few conflicting results were
due to inconsistencies in the existing data (e.g.,
two bands of nearly identical size being edited
sometimes as one band and sometimes as two).
Humans often compensate for such inconsisten-
cies, whereas a computational method would
have to have such capabilities explicitly built in.

Using ACM, we analyzed all 890,445 pairwise
comparisons of isolates from 1,335 TB cases in
San Francisco from 1991 to mid-1996. The
autoclusters defined from the pairwise compari-
sons agreed closely with the clusters defined by
computer-assisted visual inspection (Table 2). An
example of one autocluster is shown in Figure 3.
Without additional alignment, noise in fragment
length measurements makes it difficult to
determine if these putative clusters include
individual patterns which, although similar, are
distinct (outliers) or if the cluster contains
identifiable subgroups of patterns (subclusters).

We then further analyzed autoclusters and
identified more precisely nonidentical genotypes.
Refinement of clusters begins with defining a
consensus pattern for the cluster (consisting of
the collection of mean fragment lengths for each
band). Then the fragment lengths for each
putative member of the autocluster are aligned to

Table 1. Pairwise comparisons (n=6,641) of lanes across
gels characterize unaligned proportional error and residual
error

Unaligned Aligned
pairwise pairwise

Mean proportional proportional
H37Rv kilo- error error
band bases mean s.d. mean s.d.
b* wb r(b) ra(b)
1 5.029 0.0253 0.0196 0.0099 0.0079
2 4.853 0.0249 0.0202 0.0084 0.0075
3 3.533 0.0253 0.0303 0.0109 0.0203
4 2.814 0.0237 0.0283 0.0105 0.0182
5 2.153 0.0202 0.0186 0.0086 0.0125
6 1.892 0.0210 0.0204 0.0100 0.0085
7 1.800 0.0226 0.0220 0.0092 0.0082
8 1.684 0.0227 0.0193 0.0083 0.0083
9 1.541 0.0221 0.0198 0.0079 0.0081
10 1.397 0.0225 0.0200 0.0093 0.0078
11 1.314 0.0231 0.0200 0.0111 0.0090
12 0.936 0.0281 0.0249 0.0142 0.0157
mean 0.0235 0.0219 0.0099 0.0110
*Symbols as in Appendix.

Table 2. Preliminary autoclustering agrees closely with
results obtained by computer-assisted visual inspection
(CAVI)

Clustered Not clustered
 by CAVI     by CAVI Total

Autoclustered 540   27    567
Not autoclustered   49 719    768
Total 589 746 1,335
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the consensus pattern. After alignment, a pattern can
be easily identified as an outlier (Figure 3).

If the analysis of a refined, aligned cluster
shows multiple outliers, realignment of subsets of
lanes can be used to reveal subclusters of
identical patterns. In Figure 4 the distributions of
fragment lengths before (a,b) and after (c,d) an
initial alignment are presented for an autocluster
of 84 2-banders from San Francisco. Given that
the aligned bands are clearly split into two
distributions, we split the autocluster into two
subclusters. A set of 26 fingerprints (group 1) is
aligned to its assembled mean-value lane (Figure 4
e,f), as is a set of 58 fingerprints (group 2, Figure 4
g,h). The contrast between the original fragment
length data and the two well-aligned groups of
fingerprints shows that the higher fragment length
band is shifted between the two groups and no clear
outliers exist after alignment. Figure 5 shows that
alignment greatly improves a difficult-to-resolve
clustering issue among four lanes.

Preliminary investigation with a polymor-
phic GC-rich sequence (PGRS) fingerprinting
method shows that the two subclusters exhibit
distinct fingerprints, which further validates the
increased specificity in IS6110 fingerprints. Of 81
PGRS genotyped autoclustered 2-banders, 63 fall
into eight visually defined clusters, the remain-
ing being unique PGRS patterns among the
members of the IS6110 2-banded autocluster.
Each cluster consists of isolates that all fall into
one or the other IS6110-refined subcluster.

Conclusions
We have developed and validated a system-

atic approach to pairwise comparison and
clustering of identical patterns in a large data set
of DNA fragment-based genotypes. Incorporating
a control pattern in each experiment allows the
nature and magnitude of error in DNA fragment
length measurements to be determined. An
analysis of measurement error provides param-
eter values to use with algorithms that
accommodate these errors. Relative scaling of
entire lanes, an important characteristic of the
error generated in quantitating fragment lengths
from RFLP patterns used to type M. tuberculosis
isolates, arises in part from aligning two images
of a gel, one for internal lane size standards and
one for data fragments; the image of internal
standards and the image of data fragments are
registered by three marks. Error in registration
of the two images occurs, leading to the scaling

effect in the fragment lengths reported. We
strongly suggest that software for analyzing
internal lane size standards and data fragments
from separate images permit (and encourage) use
of more than three registration marks. While
internal standards compensate for idiosyncrasies
in lane-specific fragment mobility, the limita-
tions imposed by poor registration methods can
result in increased scaling error. We have
demonstrated that allowing for scaling, as in
ACM, greatly assists in automating matching;
incorporating alignment of pairs of lanes into the
method has provided fully automated lane
matching that agrees closely with results of the
well-established method of computer-assisted
visual comparison. We successfully address the
nontransitivity of pairwise identity and once
again use scaling of lanes to ensure the reliability
of automated clustering of identical patterns.

Alignment of DNA fragment patterns
removes noise in clusters of fingerprints, showing
further specificity in genotyping. This is
analogous to the experimental approach of
rerunning similar patterns on a single gel to
reduce intergel noise. Mathematical transforma-
tion of the fragment length data yields similar
information for far less cost in labor and
materials. Further automated clustering within
sets of aligned patterns could exploit the fact that
we assume putative homology of fragments. As
the aligned patterns have the same number of
fragments, the residual error presents a
multidimensional clustering problem; each pat-
tern may deviate from the mean-value pattern in
any of the fragment lengths. This clustering may
prove more straightforward than the more
general problem of clustering among patterns
differing in numbers of fragments.

Numerous commercial packages of computer
software are available to compare and match
DNA fragment patterns. The availability of these
systems fosters unquestioning application of
turnkey pattern matching and clustering meth-
ods, which are not always fully documented or
validated (for fragment-based genotypes) in the
scientific literature. While possibly acceptable for
small studies when visually validated, this
approach to data analysis is risky for large
studies. The methods for matching DNA
fragment patterns presented in this paper should
be an adjunct to software packages that
quantitate fragments. We provide a systematic
approach to analysis of fragment length



164Emerging Infectious Diseases Vol. 4, No. 2, April–June 1998

Perspectives

Figure 4. Histograms of the fragment lengths for 84 two-banded patterns connected by identity (autoclustered
with in-house software) exhibit enough spread in values to make detecting outliers and band shifts difficult (a,b).
Aligning the 84 lanes to the mean-value lane for this collection reveals that the lanes do not align well, but instead
shows bimodal distributions for the fragment lengths (c,d). Dividing the 84 fingerprints into two sets and
separating the distinct distributions detected when aligning all 84 fingerprints show that 26 fingerprints align
well to their mean-value lane (e,f), and the remaining 58 also align well to their respective mean value lane (g,h).
The smaller fragment length fragment does not appear shifted between the two sets of 2-banders (comparing e
to g), but the larger fragment is clearly shifted (comparing f to h).
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estimates, appropriate whether the numerical
data are generated by hand using a ruler and
arithmetic or are output by a multithousand
dollar gel analyzer. This approach can thus be
used by molecular epidemiologists working with
both large and small budgets around the world.
We anticipate that our methods can be
incorporated into existing commercial software
packages with broad distribution and encourage
similar documentation in peer-reviewed journals
of other methods provided in software packages.

In addition, our focus on the use of fragment
length data, as opposed to the comparison of
actual images, will foster comparison of data
generated in different laboratories that use
different proprietary software. We are working
on a World-Wide Web–based system to facilitate
IS6110 genotype data sharing.

The availability of a precise and validated
method to count the number of matching
fragments in a pairwise fashion among very large
numbers of patterns now permits an assessment
of the importance and usefulness of approaches
that exploit fingerprint similarity. In conjunction
with the growing understanding of the underly-
ing biology of IS6110 instability and the relevant

statistical issues, this may greatly expand the
scope of TB molecular epidemiology.

A general question arises when comparing
molecular fingerprints: how many bands need to
match to indicate a close biologic relationship?
Aside from the issues of defining biologic
“closeness”—too often ignored in epidemiologic
studies—technical issues are relevant to ACM.
The usefulness of the matched band information
output by ACM depends on at least several
factors: the underlying band size distribution
from which fingerprint bands are sampled, the
independence of sampled bands, measurement
error (both scaling and independent band error),
the length of the gel, and the number of
fragments. At one extreme, where error is large
and few bands are observed, even in the case of a
perfect match, statistical analysis may fail to
reject coincidental band matches. By using
computer simulation and sets of assumptions
regarding band size distributions, one may learn
about the role of coincidental band matching. We
are actively researching these issues for IS6110
fingerprint comparisons. Furthermore, we in-
tend to provide a general computational
framework in which one may assess error in
laboratory measurement, the appropriateness of
ACM for analyzing data (and appropriate
parameter values to use with the method), and
the role of coincidence in band matching.
Information regarding computer programs for
various tasks, including ACM matching itself,
will be made available on the Internet at http://
molepi.stanford.edu/hugh/acm.

A study of M. tuberculosis isolates from
northern Tanzania demonstrates the utility of
partial matching (3). The study brings into focus
difficulties inherent in employing one-parameter
tolerance for DNA fragment-based genotype
matching, a technical issue effectively addressed
by ACM. Gillespie et al. (7) also call attention to
the poor specificity of low copy number IS6110-
based fingerprints, exacerbated by the use of the
Dice coefficient. We are pursuing alternative
similarity measures that use the numbers of
matching fragments identified by ACM and are
tailored to the needs of epidemiologic investiga-
tions. Dendogram clustering methods often
provided in software targeted at DNA-fragment
genotype management and analysis could in
some instances fail to reconstruct the correct
relationships among infectious organism iso-
lates, even when presented perfect clock-like

Figure 5. Prior to alignment of two sets of 2-banders,
lanes are difficult to cluster (lanes a-d are from the
distributions in Figures 4a and 4b). Subsequent to
alignment, lanes are much easier to cluster (lanes a′
and b′ are specific examples from the distributions in
Figures 4e and 4f; lanes c′ and d′ likewise correspond
to Figures 4g and 4h). Fragment lengths are given in
kilobasepairs (kb).
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genetic distances. This may result in part from
the fact that fast-evolving markers are character-
ized for isolates sampled over a period; samples
are not contemporaneous. In conjunction with
our efforts to define similarity measures, we are
also working to modify phylogenetic inference
tools used in clinical and molecular epidemiologic
settings to better handle the data typically
analyzed in molecular fingerprint management
and analysis software.

Appendix

Analysis of Error in Data
To characterize error in fragment length

measurement, pairs of 12 band 7H37Rv lanes are
compared; the difference between fragment
lengths of each band is calculated as follows. Let
wi,b be the measured fragment length of band b of
lane i. In general, let B be the number of bands.
To compare lanes i and j, we can calculate the
absolute difference between the measured
lengths,

di,j(b) = |wi,b – wj,b|.

Let δi,j be an indicator that equals 1 when lanes i
and j are from the same electrophoresis gel and 0
otherwise. Let n be the total number of replicate
lanes. The mean absolute difference for a
fragment over all pairwise comparisons of lanes
from different gels is found by,

where  is the num-

ber of pairs of lanes from different gels.
Similarly, we calculate the proportional

difference between measurements for a fragment,

and its mean for comparisons between lanes from
different gels,

Calculating fragment measurement errors for

the  pairwise compari-

sons of lanes from the same gel are also
performed.

Align-and-Count Matching Algorithm
The Align-and-Count Method (ACM) for

counting the matching bands between two lanes
is defined as follows. Consider two lanes, lane A
with m bands,

wA,x , x = 1,...,m,

and lane B with n bands,

wB,y , y = 1,...,n.

We count the mutually closest measured
fragment lengths within a proportional deviation
factor, ∆ , over a range of alignments (Figure 1).
Alignments are searched by scaling the fragment
lengths. Multiplying the fragment lengths in a
lane by a scaling factor reflects the phenomenon
that error in fragment lengths is proportional to
fragment length and is positively correlated for
fragments in a lane.

Define

Match  

By mutually closest we mean that there is no
band in lane B closer to band x of lane A than band
y, and there is no band in lane A closer to band y
of lane B than band x.

Lanes are incrementally scaled (I incre-
ments), and the maximum number of matching
bands is reported. Specifically, the Jth increment
in the search scales the lanes as follows:

and

Here S defines the range of scaling factors
(Figure 1). In this way the lanes slide past each
other as J goes from 1 to I, always scaling the
bands proportionally. At one extreme, lane A is

if |w
B,y

 - w
A,x

| ≤ ∆ and x and y
are mutually closest bands
otherwise
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scaled (S/2 * 100)% larger while B is scaled (S/
2 * 100)% smaller.  At the other extreme the
scaling is reversed.

The number of matching bands reported, k, is
the maximum of K(J) over J = 1,...,I:

We have described a method to find the number of
matching bands k, when comparing a lane with m
bands and a lane with n bands. This algorithm
has three parameters: S, the range of scaling
factors to align the lanes, ∆, the cutoff
proportional difference for mutually closest
bands to be considered matches, and I, the
number of increments used to search the range of
scaling. Note that ∆, in general, may be a
function of the fragment lengths of mutually
closest bands under inspection.

A Graph-Theoretic Approach to Identical
Fingerprints

If all bands in lane j match their aligned
counterparts in lane i, the two lanes are defined
as identical. A common feature of ACM and all
band-sharing approaches is that identity may not
be transitive. This situation may arise when
accumulated errors exceed tolerance or (propor-
tionally) small changes in fragment size occur in
biologic samples.

To analyze identical fingerprints, we define
sets of fingerprints connected by identity. Let
each of T fingerprints exhibiting the same
number of bands be a node in a graph; let an edge
joining two nodes indicate that two fingerprints
are identical. By an algorithm attributable to
Dijkstra (10), we determine the number of steps,
P, of identity between two fingerprints when such
a pathway exists. The algorithm finds the
shortest path between two nodes. We use a code
modified from that presented in Tenenbaum et al.
(10). From this analysis we assemble collections
of fingerprints connected by identity, which serve
as tentative clusters of identical fingerprints. We
refer to these tentative clusters as autoclusters.
The distributions of fragment lengths for these
collections of lanes are subsequently plotted,
allowing outliers and band-shifts to be identified.

Alignment and Analysis of Residual Error
We aligned two replicate fingerprint patterns

by using the following least squares regression

formula. We minimize

with respect to the scaling factor s by which lane
j is aligned to lane i. Log-transformed fragment
lengths are used to reflect the fact that
measurement error is proportional to fragment
length. The minimization has the closed form
solution

Residual error in band size measurement
after lane alignment is evaluated in a fashion
analogous to that used for unaligned lanes. For
example, the proportional difference between
band b of lane j aligned to lane i and band b of lane
i is

For alignment of sets of lanes, the mean
fragment length is calculated for each fragment.
A mean-value lane is constructed from these
mean lengths. Each lane is then aligned to the
mean-value lane. The alignment is plotted and
analyzed for outliers, providing refined clusters
of identical fingerprints.
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